427 research outputs found

    X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films

    Full text link
    We analyze the lineshape of x-ray diffraction profiles of GaN epitaxial layers with large densities of randomly distributed threading dislocations. The peaks are Gaussian only in the central, most intense part of the peak, while the tails obey a power law. The q−3q^{-3} decay typical for random dislocations is observed in double-crystal rocking curves. The entire profile is well fitted by a restricted random dislocation distribution. The densities of both edge and screw threading dislocations and the ranges of dislocation correlations are obtained

    Synthesis, crystal structure and chemical stability of the superconductor FeSe_{1-x}

    Full text link
    We report on a comparative study of the crystal structure and the magnetic properties of FeSe1-x (x= 0.00 - 0.15) superconducting samples by neutron powder diffraction and magnetization measurements. The samples were synthesized by two different methods: a 'low-temperature' one using powders as a starting material at T =700 C and a "high-temperature' method using solid pieces of Fe and Se at T= 1070 C. The effect of a starting (nominal) stoichiometry on the phase purity of the obtained samples, the superconducting transition temperature Tc, as well as the chemical instability of FeSe1-x at ambient conditions were investigated. It was found that in the Fe-Se system a stable phase exhibiting superconductivity at Tc~8K exists in a narrow range of selenium concentration (FeSe0.974(2)).Comment: 7 pages, 7 figures, 1 tabl

    A new neutron study of the short range order inversion in Fe1−x_{1-x}Crx_x

    Full text link
    We have performed new neutron diffuse scattering measurements in Fe1−x_{1-x}Crx_x solid solutions, in a concentration range 0<<x<<0.15, where the atomic distribution shows an inversion of the short range order. By optimizing the signal-background ratio, we obtain an accurate determination of the concentration of inversion x0_0 =0.110(5). We determine the near neighbor atomic short range order parameters and pair potentials, which change sign at x0_0. The experimental results are compared with previous first principle calculations and atomistic simulations.Comment: 6 pages; 6 figure

    Theory of temperature dependence of the Fermi surface-induced splitting of the alloy diffuse-scattering intensity peak

    Full text link
    The explanation is presented for the temperature dependence of the fourfold intensity peak splitting found recently in diffuse scattering from the disordered Cu3Au alloy. The wavevector and temperature dependence of the self-energy is identified as the origin of the observed behaviour. Two approaches for the calculation of the self-energy, the high-temperature expansion and the alpha-expansion, are proposed. Applied to the Cu3Au alloy, both methods predict the increase of the splitting with temperature, in agreement with the experimental results.Comment: 4 pages, 3 EPS figures, RevTeX, submitted to J. Phys. Condens. Matter (Letter to the Editor

    Temperature independent diffuse scattering and elastic lattice deformations in relaxor PbMg1/3Nb2/3O3

    Full text link
    The results of diffuse neutron scattering experiment on PbMg1/3Nb2/3O3 single crystal above the Burns temperature are reported. It is shown that the high temperature elastic diffuse component is highly anisotropic in low-symmetry Brillouin zones and this anisotropy can be described using Huang scattering formalism assuming that the scattering originates from mesoscopic lattice deformations due to elastic defects. The qualitative agreement between this model and the experimental data is achieved with simple isotropic defects. It is demonstrated that weak satellite maxima near the Bragg reflections can be interpreted as the finite resolution effect.Comment: 7 pages, 7 figure

    Depth-dependent critical behavior in V2H

    Get PDF
    Using X-ray diffuse scattering, we investigate the critical behavior of an order-disorder phase transition in a defective "skin-layer" of V2H. In the skin-layer, there exist walls of dislocation lines oriented normal to the surface. The density of dislocation lines within a wall decreases continuously with depth. We find that, because of this inhomogeneous distribution of defects, the transition effectively occurs at a depth-dependent local critical temperature. A depth-dependent scaling law is proposed to describe the corresponding critical ordering behavior.Comment: 5 pages, 4 figure

    Concentration phase diagram of Ba(x)Sr(1-x)TiO3 solid solutions

    Full text link
    Method of derivation of phenomenological thermodynamic potential of solid solutions is proposed in which the interaction of the order parameters of constituents is introduced through the account of elastic strain due to misfit of the lattice parameters of the end-members. The validity of the method is demonstrated for Ba(x)Sr(1-x)TiO3 system being a typical example of ferroelectric solid solution. Its phase diagram is determined using experimental data for the coefficients in the phenomenological potentials of SrTiO3 and BaTiO3. In the phase diagram of the Ba(x)Sr(1-x)TiO3 system for small Ba concentration, there are a tricritical point and two multiphase points one of which is associated with up to 6 possible phases.Comment: 8 pages, 3 figure

    Fermi-surface induced modulation in an optimally doped YBCO superconductor

    Full text link
    We have observed a Fermi-surface (FS) induced lattice modulation in a YBCO superconductor with a wavevector along CuO chains, {\it i.e.} q1{\bf q}_1=(0,δ\delta,0). The value of δ∼0.21\delta\sim0.21 is twice the Fermi wavevector (2kF2{\bf k}_F) along {\bf b*} connecting nearly nested FS `ridges'. The q1{\bf q}_1 modulation exists only within O-vacancy-ordered islands (characterized by q0{\bf q}_0=(14,0,0))(\frac14,0,0)) and persists well above and below TcT_c. Our results are consistent with the presence of a FS-induced charge-density wave

    First-order Raman spectra of double perovskites AB′1/2B'{1/2}B''{1/2}O3

    Full text link
    First principles computations of Raman intensities were performed for perovskite-family compound CaAl1/2_{1/2}Nb1/2_{1/2}O3_3 (CAN). This compound features 1:1 (NaCl-type) ordering of Al and Nb superimposed onto the b−b−c+b^-b^-c+ octahedral tilting. Raman tensor for CAN was computed using the package for first-principles computations ABINIT (URL \underline {http://www.abinit.org}). Computations performed for both untilted cubic (Fm3ˉmFm\bar{3}m) and tilted monoclinic (P21/nP2_1/n) CAN structures showed that the strongest Raman lines are associated with the ordering of Al and Nb. The computed spectrum agreed qualitatively with the experimental data measured on powder (CAN is available in polycrystalline form only). The effect of cation disorder on the Raman intensities was considered using phenomenological theory of light scattering in the vicinity of a phase transition. We suggest that, for certain modes, the corresponding Raman intensities depend primarily on the average long range order while, for other modes, the intensities are determined by fluctuations of the order parameter.Comment: 4 figures, submitte

    The evolution with temperature of magnetic polaron state in an antiferromagnetic chain with impurities

    Full text link
    The thermal behavior of a one-dimensional antiferromagnetic chain doped by donor impurities was analyzed. The ground state of such a chain corresponds to the formation of a set of ferromagnetically correlated regions localized near impurities (bound magnetic polarons). At finite temperatures, the magnetic structure of the chain was calculated simultaneously with the wave function of a conduction electron bound by an impurity. The calculations were performed using an approximate variational method and a Monte Carlo simulation. Both these methods give similar results. The analysis of the temperature dependence of correlation functions for neighboring local spins demonstrated that the ferromagnetic correlations inside a magnetic polaron remain significant even above the N\'eel temperature TNT_N implying rather high stability of the magnetic polaron state. In the case when the electron-impurity coupling energy VV is not too high (for VV lower that the electron hopping integral tt), the magnetic polaron could be depinned from impurity retaining its magnetic structure. Such a depinning occurs at temperatures of the order of TNT_N. At even higher temperatures (T∼tT \sim t) magnetic polarons disappear and the chain becomes completely disordered.Comment: 17 pages, 5 figures, RevTe
    • …
    corecore